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Although models of the pressure-strain term explain many features of nearly uniform 
homogeneous shear flows, a discrepancy remains (Leslie 1980). It is suggested that 
the discrepancy is caused by use of an empirical expression for the fluctuation part 
of the pressur-train term, the part usually denoted by The discrepancy is 
eliminated by replacement of the empirical &, with a recent theoretical expression. 
Relatedly, the Launder, Reece & Rodi (1975) model for the mean-field part $$,, is 
shown to be a good approximation for both a strongly and weakly sheared flow. This 
model of $g,3,2 when combined with the theoretical $ij,l is found to provide an 
explanation for experiments of both Champagne, Harris & Corrsin (1970) and Harris, 
Graham k Corrsin (1977). Full correction requires that deviations from local isotropy 
be accounted for. Special emphasis is given to a theoretical demonstration that the 
pressure-strain term does not cause a retun to isotropy but, rather, it  resists large 
anisotropy - a weaker effect. 

1. Introduction 
It was pointed out by Leslie (1980) that the experiments of Champagne, Harris 

& Corrsin (1970, hereinafter referred to as CHC) and Harris, Graham & Corrsin (1977, 
hereinafter referred to as HGC) are of central importance in turbulence modelling, 
since the (difficult) pressure-strain term can be inferred directly from each of them. 
Such an inference is possible because of their quasi-homogeneous turbulence fields 
produced by a nearly uniform mean shear - the former at low shear, the latter at high 
shear. Leslie then showed that, although a model of the pressure-strain explained 
many features of these experiments, a major discrepancy remained. This implies a 
defect in the model, since the discrepancy is beyond any possible error in the 
measurement. The purpose of our article is to suggest wherein lies the defect in the 
model, and how it may be corrected. 

The model actually consists of two parts. That is, Rotta (1951) showed that the 
pressure-strain term $$, can be divided into a fluctuation-field part denoted by $$,,. 
and a mean-field part denoted by $u,2. Both parts must be modelled, and there IS 
some controversy as to which part has been adequately modelled and which not. The 
model of $*,, most often used is an empirical model suggested by Rotta (1951). As 
to $$,, 2, the model most often used is that derived by Launder, Reece & Rodi (1975) 
and, from different considerations, by Naot, Shavit & Wolfshtein (1973). (There are 
actually two forms of the latter model - a general form and a simplification we refer 
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to as the abridged form. The latter was used by Rodi (1976), Meroney (1976) and 
Gibson & Launder (1978).) Leslie assumed that the mentioned discrepancy between 
model and experiment is caused by use of the Launder et al. model of q5u,2. Our 
suggestion is that the discrepancy is caused by use of the empirical &, ,. We are led 
to this suggestion by a recent theoretical expression for &, , derived by one of us 
(Weinstock 1981, 1982, hereinafter referred t o  as papers I and I1 respectively). One 
of our goals is to determine if the discrepancy between model and experiment is indeed 
eliminated when the empirical dtj, , is replaced by the theoretical expression. 

We consider three related matters. (1) We wish to determine if either of the two 
q5ij,2 models (the general and abridged forms) is a good approximation for both 
experiments (CHC and HGC). If one model is correct the other is not. (2) We wish 
to demonstrate the difference between the empirical and theoretical q5$,, ,, and the 
practical consequences: in particular, to  point out that, whereas the former predicts 
a return to isotropy, the latter predicts a resistance to  large anisotropy - a weaker 
effect. A comparison is also made with eddy simulations of q5u,1. (3) We wish to 
determine if the predicted components of stress agree with experiment when the 
theoretical q5ij, , is used. The method of algebraic modelling (Rodi 1976) is employed 
to  calculate the stresses. 

The organization of this paper is as follows. The difference between theoretical and 
empirical q5ij+l is discussed in $2.1, where i t  is shown that the pressurestrain term 
causes a resistance to  large anisotropy rather than return to isotropy. I n  $2.2 values 
of #i5,2 are calculated from the experiments of HGC and CHC and compared with 
the models. These values are calculated by subtracting the theoretical q5dj, , from the 
experimental q5ij (i.e. q5ij, = q5dj(exp)-q5dj, ,(theory)). I n  $3  stress components 
predicted by the theoretical q5dj, , in combination with the general Launder et al. model 
of q5sj, are compared with experimental measurements. A summary and conclusion 
are given in $4. 

An oversight in paper I1 one of us wishes to  correct here is to  acknowledge that 
a theoretical formalism closely related to  that paper was presented by Cambon, 
Jaendel & Mathieu (1981). They emphasized a numerical analysis of shear flows. A 
statistical formalism for the pressure-strain term was also presented by Yoshizawa 
(1982) as an expansion in anisotropy. 

2. Pressure-strain rate 
2.1. Fluctuation part : resistance to large anisotropy 

The purpose of this subsection is to  introduce the fluctuation and mean field parts 
of the pressure-strain term, and to  compare two expressions for the fluctuation 
part - the empirical expression and the recent theoretical expression. 

For a nearly homogeneous shear flow, the Reynolds-stress equation can be written 
as 

D(ufuL p z j  + q5ij - %5 9 

Dt production pressure dissipation 
-strain 

where ud is the ith component of the fluctuation velocity, xt is a Cartesian coordinate, 
Uk is the mean velocity along the k-direction, 

ej -(U(Uk)auj/axk-(u,uk) aui/axk 

is the turbulence production, q5ij is the pressure-strain rate, qt3 is the viscous 
dissipation, and we consider a unidirectional mean flow U = { U,(x2), 0,O) so that 
D/Dt = a/at + U ,  a/ax,. 
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Rotta (1951) showed that the pressurt+strain-rate term #i, can be divided into two 
parts : 

where p is the pressure fluctuation ($$, is denoted by 2 A ,  in papers I and 11). The 
f i s t  part #*,, is a triple velocity correlation often referred to as the fluctuation part, 
or ‘ return-to-isotropy ’ part, while $$,, is proportional to the mean-velocity gradient 
and is referred to as the mean-field part. The goal of theory and model is to express 
#i, in terms of (ui u,) - a single-point closure. 

Most workers have used Rotta’s model for the fluctuation part : 

$t,, = -cl  - ( ( u ~  u,) -$kS,,) (empirical model), 

where k = :(ut UJ is the turbulence-energy density, e is the energy-dissipation rate 
and c1 is the Rotta constant. Lumley (1978) has shown that c1 cannot be constant. 
More recently, Weinstock in papers I and I1 calculated c1 from first principles and 
showed that c1 is not only not constant, but differs for different components ij .  The 
theoretical expression for &, is 

(3) 
6 

k 

where Cii) are dimensionless coefficients determined explicitly by the theory. Ex- 
pressions for these theoretical coefficients are given in the Appendix, where they are 
seen to vary with (u i ) / (u$)  and (ui)/(ug).  This variation corresponds to, and 
accounts for, the ratios of the many scales of turbulence-energy spectra (i.e. Cii) was 
derived from a two-point turbulence theory, and a relationship exists between 
(u i ) / (u: )  and spectral scale ratios when the Reynolds number is large). For present 
convenience, the values of Cij) are graphed in figures 1 (a-c) as functions of (u l ) / (u$)  
and (uf)/(ug) for the case of local isotropy. A deviation from local isotropy is 
accounted for in figure 2. These figures show that C,Ci) varies greatly with anisotropy, 
and that Cli) + Ci;) += C#. Both features are in sharp contrast to the Rotta model 
(3). Both features were also found in eddy simulations by Feiereisen, Reynolds & 
Ferziger (1981). (That Ci;) can even be negative for some conditions is not without 
precedent, since negative values were implied in the unstable atmospheric boundary 
layer (Wyngaard 1980).) The difference between theoretical and empirical values of 
Ci;), and an implication for turbulence modelling, is shown in $3. However, the most 
striking feature of C#), and the feature we stress here, has to do with the concept 
of return to isotropy. It is seen in figure 1 (a) that Cii) is relatively quite small at small 
anisotropy and increases with anisotropy. For example, C# increases from 0.6 to 1 .1  
as <ul)/(u:) increases from 1 to 4, with (uf)/(ug) held fixed at unity. Since, as 
pointed out by Lumley (1978), the pressure-strain term does not cause decaying 
turbulence to be isotropic unless C{i) > 1 ,  we conclude from figure 1 (a)  that there is 
no return to isotropy. Rather, there is only a resistance to large anisotropy. 

If, indeed, the empirical modal (3) is inaccurate - as we believe - it might be the 
root cause of the discrepancy between model and experiment. Our object is to 
determine if this is so by replacing (3) with the theoretical expression, and comparing 
its prediction with experiment. The underlying assumption is that one of the Launder 
et al. models is a good approximation for #$,, 2. Let us next see if this assumption is 
true for HGC and CHC. 
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FIGURE 1. Theoretical q:) versus (u:)/(u:) for various values of (u:)/(u:): (a) C#; (b)  ccd,,; (c )  
Chi). These calculations are for the c w  of local isotropy, and consequently do not apply to CHC 
and HGC. Figure 2 should be used for those experiments. (Rapid variations of q:) = - ( k / ~ )  #*,, Jafi 
seen in (b) and ( c )  occur in neighbourhoods of a,, = 0 (vanishing anisotropy). The strain-rate terms 

are small near those points, but do not necessarily vanish. The latter behaviour differs from 
the Rotta model, which has #tc. vanish whenever a,, vanishes.) 

2.2. Mean-Jield part 
The purpose of this subsection is to  determine if either of the models of #g?,2 is 
compatible with the data of both the HGC and CHC experiments, i.e. to verify if either 
model provides a good approximation for both strong and weak shears. A direct 
procedure for this verification would be to calculate &, for both experiments and 
compare with the models. However, these experiments actually determine the total 
pressure-strain term $#, = $i,, 1+q5U,2 and not q5u,2 by itself. Hence to obtain 
experimental values of &, we must subtract off the fluctuation part &, Our 
contention is that the Rotta model of &, is not satisfactory for this subtraction, 
and that the theoretical expression (4) should be used instead. On substitution of (4) 
into (2), the mean-field part is written as 

This equation gives the mean-field part in terms of measurable quantities and 
theoretical coefficients Cij). It allows &, to be determined from measurements of 
HGC and CHC. However, experimental values of are of little interest in 
themselves. They are important if relatable to a general formulation of &, - such 
as the Launder et al. models. Our goal, then, is to compare the experimental values 
of &, in (5 )  with the models of q5i,, 
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To facilitate this comparison, we note that both forms of the models (the general 

and abridged forms) can be written - for our case of a simple shear - as 

Here Ci;) are dimensionless coefficients. The two models differ only in the values 
of these coefficients: for the abridged model Ci;) = c, = constant (all i , j ) ,  whereas for 
the general model, for a unidirectional flow, Ci?) = h(9-3?), Cg)  = &(12-157), 
Cii) = &(6+9y) (Launder et al. 1975). From a more general point of view, (6) can be 
viewed as a definition of Ci;). From that point of view 6'1;) can vary with the mean 
shear, and need not be constant. The questions then are: (a)  do either of the two 
models give a good approximation for Ci;); and ( 6 )  does Ci;) vary with the 
dimensionless shear? It is to help answer these questions that we calculate these 
coefficients for the experiments of both HGC and CHC and compare with the models. 
The expression employed for these calculations of (21;) is given by combination of 
(5) and (6) : 

(7) 
6 

- cap ( pi, - !Psi,) = $i* + cp - (( ui Ui) - +Mi,). k 
We estimate the diagonal elements Cis) first for the HGC experiment and 

afterwards for the CHC experiment. Expressions for the theoretical coefficients Ci:) 
are given in the Appendix, and, for convenience of computation, their values for the 
experiments are given in figures 2 (a-c). These expressions are taken from paper 11. 

To determine Ci;) we substitute the HGC experimental values (ur) = (4100,1630, 
2450) cm2 sP2 for i = 1 , 2 , 3  in figure 2 and find Cj:) = (0.98, 1.17,0.15) for i = 1,2,3.  
(Figure 2 differs from figure 1 because local isotropy is not assumed - as explained 
in $3.) These theoretical values of Cia) are notably consistent with eddy-simulation 
values (see table 4.5 of Feiereisen et al. 1981) - as are the CHC values given before 
(12). These values are markedly different from the coefficient c1 x 2 widely used in 
models. 

To determine the diagonal elements q5ii for the HGC experiment, we write (1) as 

(i = 1,2, or 3). 

We rely on Leslie's computation of q5ii, except for one difference, namely we do not 
assume the local-isotropic relation ei, = idij. Thus, from (8), 

where $L are the local-isotropic values computed by Leslie. An estimate of eii is 
obtained from the spectral data in figure 21 of CHC, which show that F,(kl)  ot 4, k?, 
with ell > e33 > e,,. Such anisotropy of dissipation was also found in large-eddy 
simulations by Feiereisen et al. (1981). (Anisotropy of ei3 is also found in measurements 
in the atmospheric surface layer under conditions of neutral stability (Kaimal et al. 
1972), although there the ratio of eZ2 to  ell is influenced by the surface as well as the 
shear.) The CHC values (their figure 21) indicate ell = (1.2 to  1.3) e22 and E~~ = (1.1 
to 1.15) eZ2 in the (nearly) inertial subrange. This magnitude of deviation from local 
isotropy (about 25%) conforms to that found by CHC and HGC from other 
considerations (see 55.2 of CHC or 54.7 of HGC). Approximate ratios of ett to  the 
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measured e are determined by ell + eZ2 + e33 = 2s (with ell w 1.256,,, E~~ x 1 . 1 3 ~ ~ ~ )  to 
be 

% = 0.73, 2 = 0.59, % = 0.68 (10) 
E E E 

- quite comparable to the eddy-simulation values (Feiereisen et al. 1981). These 
corrections for eii are combined with the computation of Leslie given by $:* = 
(-7.21, 3.39, 3.83) x lo4 cma s - ~  (for i = 1,2,3),  to obtain = (-7.15, 3.31, 3.84) 
x lo4 cm2 sP. The anistropy correction is seen to be negligible for the HGC experi- 
ment, but is found to be significant for the CHC experiment calculated in the next 
paragraph. (Also, in both experiments, the correction is quite significant for I?{:), 
as shown in the Appendix.) Finally, the values of Ci,2) for HGC are given by 
substitution into (7) of this $tr together with the experimental values 
E = 3.76 x lo4 om2 s - ~  (as corrected by Leslie 1980), k = 4090 om2 SP, P = 
5.84 x lo4 cm2 s - ~ ,  and the values of Cii) and (u:) given above. The result is 

Cg) = 0.73, Cg) = 0.50, Cg) = 0.96 (HGC). (11) 

Upon comparison, it is seen that these values are quite close to the general model 
(within 5 %) when y is selected to be 0.42. With regard to the abridged value, there 
is a definite, significant difference -no matter what value is chosen for c2. (This 
difference is alluded to by Leslie, who pointed out that the abridged model cannot 
explain the observed (2,3)-plane anistropy because it has Cg) = Cg) ) . )  Next we 
determine the CHC values of Cl,"). 

To calculate Cat) for the CHC experiment, we proceed in the same manner as done 
for HGC. The downstream values (us) = (500, 260, 300) cm2 s - ~  are substituted in 
figure 2 to obtain Cii) = (1.02,1.32,0.52). These values bear a remarkable resemblance 
to average eddy-simulation values (table 4.5 of Feireisen et al. 1981). Since advection 
is practically zero for CHC, the pressure-strain is simply du = - er + eta. It is easily 
evaluated by substitution of the experimental E = P = 2.35 x lo3 cm2 s - ~  together 
with the derhed values of ~ * * / s  given by (10) to obtain = (-3.07, 1.486, 
1.556) x lo3 cm2 s - ~ .  The desired coefficients Cit) are then obtained by substitution 
of this $** and Cif) into (7) together with experimental values of s and (us )  and 
k = 530 cm2 s - ~ .  The result is 

Cg) = 0.725, (7%) = 0.53, C$j) = 0.92 (CHC). (12) 

These values are seen to be remarkably close to the HGC values in (1  1)  - within 5 %. 
The agreement between CHC and HGC values implies that Cis) does not vary 
appreciably with the magnitude of mean shear or, more meaningfully, with the 
dimensionless shear strength (k,v,)-2 (aU,/az,)2,  where w, = (ik): and k, is a wave- 
number characteristic of the energy-containing subrange, since the magnitude of shear 
has significance only in relation to turbulence velocity and scale lengths. The 
dimensionless shear varies by a substantial amount between the two experiments - a 
factor of 5. Perhaps of even greater interest is that the experimental values of C$i) 
are all within 5% of the general Launder et al. model when y is selected to be 0.42. 
To us, these coincidences suggest that the aforementioned values of C{p are correct, 
to within 5% for quasi-homogeneous shear flow, and are suitable for strong shears 
as well as weak. Variations of a model $*,, were found in eddy simulations (Feiereisen 
et al. 1981), but for a different model than that of Launder et al. Although Leslie has 
proved that the general model is not exact, the error he finds is, on the whole, less 
than 10% when y = 0.4. 
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FIQURE 2. Theoretical q:) versus (u:)/(u:) at (u:)/(u:> = 1.67 with deviations from local 
isotropy given by ell = 1 . 3 ~ ~ ~  and = 1.1&,, - the value for CHC and presumably for HGC. 

To complete our discussion of Ci;), there only remains to determine the off-diagonal 
element. This is easily done, since (7) gives Cg)  as 

where we have used P12 = (u:)aU1/ax2. The experimental values of d12 are 
7.21 x lo4 om2 for HGC (see Leslie) and 3.220 x lo3 om2 s - ~  for CHC (where 
g512 = - c2 in the latter experiment, since there is no advection). The theoretical value 
of Cg) is 1.7k0.2 (see paper I), and we will use 1.8. Substitution of these values in 
(13) together with the corresponding measured values of E ,  k, (u:) and (uiu,), we 
obtain 

0.55 (CHC), 
0.64 (HGC). 

cg = 

These values agree approximately with the general model value z 0.6. The abridged 
model is also in agreement. Note, however, that the variation of CCi) with mean shear 
is almost 15 yo - a distinctly larger variation than that of the diagonal elements 
with shear. This variation is still relatively small, since the dimensionless shear 
parameter varies by a factor of 5, and use of the median value 0.6 would lessen 
possible discrepancies to less than 10 Yo. The value 0.6 is also obtained from purely 
theoretical considerations (Crow 1968) - albeit for very small anisotropy. 

In  summary, it is seen that the experiments tend to confirm the general Launder 
et al. model as a good approximation for high as well as low shear with y selected 
to be 0.42. What has been shown is that the Launder et al. model of q5t,,z combined 
with the theoretical #i,+ is compatible with both shear experiments. Hence, in our 
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view, a large discrepancy between predictions and experiments is not due to an 
inadequacy of the model of &, 2, but rather to an inadequacy of the Rotta model of 
$$). An explicit confirmation of this view is given in $3. 

3. Comparison with experiments 
The purpose of this section is to demonstrate that a discrepancy between models 

and quasi-homogeneous turbulence is eliminated when the Rotta model of &, is 
replaced by the theoretical expression, i.c. when the theoretical #$,, is used with the 
Launder et al. model of q5ij, 2. Specifically, we compare model predictions of relative 
anisotropy mij = [(ui ui) -$kdii]/k with experimental values, and, for illustrative 
purposes, with two commonly used models. In  essence, such a demonstration was 
made in $2.2 for the experiments of HGC and CHC. Here the demonstration will be 
made more explicit and for other experiments as well. 

To simplify these comparisons, we use the method of algebraic modelling (Rodi 
1976) to obtain an expression for mtj as follows. The term a(ui uj)/at is set equal to 
zero for the stationary condition of the experiments. The advection quantity is 
approximated by the algebraic-modelling assumption 

Ula(uiui)/ax, = k-'(uiui) ( P - E ) ,  

which was verified by Leslie to work very well for HGC. The pressurc+strain 
term in (1) is obtained by substitution of (4) and (6) in (2). The consequence of all 
these substitutions in (1) is to produce a closed expression for (uiui) that is easily 
solved to  yield 

This is equivalent to  the expression of Rodi, except that we have replaced c1 and c2 
by Cij) and Cif) respectively, and, in addition, the extra term 2~1.3. !, has been added 
because perfect local isotropy is not assumed. As pointed out by Rodi, the assumption 
implicit in (15) is not that the stresses themselves vary slowly, but rather that the 
relative stresses mij do. In  that case mil depends only on PIE = a, the ratio of 
production to dissipation (Leslie 1980). To evaluate mij one need only substitute the 
theoretical values of C { f )  and Cij) in (15), together with the experimental value of PIE. 

The values of Cig) are given by the median of (11) and (12), and, as emphasized, 
use of these values is equivalent to  use of the general Launder et al. model. The 
off-diagonal coefficient C(,i) is 0.6. 

As for the diagonal coefficients Cij), the values given in figure 1 were calculated 
under the assumption of local isotropy. That is, to calculate Cjj) i t  was assumed that 
the longitudinal velocity spectrum is given by F,(k,) a d k$ (i = 1,2,3) in the inertial 
subrange, where k, is the longitudinal component of wavevector k. However, as 
mentioned in $2.2 the experiments of CHC show that &(El) K &k;f, with 
ell > E~~ > E ~ ~ ,  in much of the inertial subrange (2 x lop2 < vk, 5 lo-,), where 7 is 
the Kolmogoroff microscale. The values of e i i /e  were calculated in $2,  and are given 
by (10). Although seemingly small, the deviations of from $ have a surprisingly 
large influence on the diagonal coefficients C!;). A calculation of these coefficients for 
the values of eii/E in (10) is given in figure 2. The coefficients Ci;) for CHC are obtained 
from this figure by substitution of the observed ratios (u:)/(ui) = 1.92, 
(u;)/(ui) = 1.67, and the coefficients for HGC are obtained by substitution of 
(u;)/(u:) = 2.52,and(u?)/(u;) = 1.67infigure2. WeobtainC&HC) = (1.02,1.32, 
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FIGURE 3. Stress components mfj versus P/c  = a, for the theoretical model, the abridged model 
(Gibson & Launder 1978) and the model used by Mellor & Yamada (1982) : (a) m,, ; (b)  mzz; (c) mS3 ; 
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0.52) for i = 1,2,3,  and Ci;iHGC) = (0.98, 1.17,0.15). These values differ substantially 
from those used in models, although the average resembles that proposed by Lumley 
& Newman (1977) for small anisotropy. As mentioned, they are consistent with 
eddy-simulation values. Of particular importance is that Ck) < Cih, and the former 
decreases by a factor of three in going from CHC to HGC conditions. The value of 
Cg)  decreases by almost 15 yo. Only Cj;) remains approximately the same. These values 
illustrate why models can correctly give m,, for both experiments, but not mZ2 or mS3, 
i.e. C# is fortuitously the same for both high and low shear, whereas Cg) and Cg)  
are not. 

The predicted values of mU for both experiments are now obtained by substitution 
of the aforementioned Cli) and Cjf) into (15). (Alternatively, one could use the 
theoretical expression for CjZ) instead of figure 2, and solve a more complex equation 
for mtj. The result is the same.) The dissipation components ett are given by (10) for 
both experiments, and we substitute P/e  = 1 for CHC and P/a = 1.55 for the 
downstream position xl/h = 11.0 of HGC. The predicted values of mz, for various P / E  
are given in figures 3(a-d) together with the CHC and HGC values. Several other 
experimental values are also included : Mulhearn & Luxton (1975), the midstream 
position of HGC, Hanjalid & Launder (1972) and Bradshaw (1967, with a = -0.15). 
The last two experiments, although not homogeneous as CHC, contained large regions 
of flow where the turbulent diffusion was very small (much smaller than P or e), and 
consequently should satisfy (15) fairly well near a central point in the flow. For 
comparison, figure 3 includes the abridged model, (3) plus (5) with c1 = 1.8 and 
c2 = 0.6, the values favoured by Gibson & Launder (1978), and a particularly 
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simplified model used for the atmospheric boundary layer (Mellor 1973; Mellor & 
Yamada 1982). 

It is seen in figure 3 that the theoretical model agrees to within 10% with all 
experimental values of m,,, m,,, m33 and m,,. The abridged model agrees well with 
m,, (within 10 %), less well with m,,, and not at all with m2, and m33 - as pointed out 
by Leslie (1980). The Mellor model neglects the diagonal mean-field term $tt,z, 

without a priori justification, but has the virtue of simplicity. It is seen to agree with 
m,, and m,,, but not a t  all with m,, or m33. 

The extent of agreement found here between theory and experiment cannot be 
obtained when the Rotta constant c, is used for Cll). One might object that three 
constants were needed to obtain this agreement, Cgj, Cg) ,  Cg) ,  whereas the original 
model used only two constants, c, and y. However, in actuality, only a single constant 
was used, namely y = 0.42. That is, what was done in essence was to show that the 
experimental values of every component of C { f )  is in agreement {within 5 %) with the 
Launder et al. model when y is selected to be 0.42 - and this for both experiments. 
Hence use was made of only y = 0.42 together with the theoretical Cii). 

4. Summary and conclusions 
It has been demonstrated that, although inexact, the (general) Launder et al. model 

of &, with y = 0.42 is a good approximation for both strongly and weakly sheared, 
nearly homogeneous flows. Relatedly, this model when used together with the 
theoretical dtj, , predicts stress components that are all within 10 yo of both strong- 
and weak-shear experiments. The previously found discrepancy is attributed to use 
of the Rotta model of &, Although our verification of the Launder et al. model is 
for only a simple flow condition, it is the flow most specific for the pressure-strain 
term. We believed that the discrepancy found between this flow and models should 
be explained before giving consideration to more complex flows. For such future 
consideration, both the Launder et al. model of & z  (given by eq. (10) of Launder 
et al.) and the theoretical &, , apply to more complex flows. 

The theoretical &, , predicts that the pressurntrain term does not cause a return 
to isotropy. Rather, it  resists large anisotropy - a weaker effect. Therefore, in 
addition to its consistency with the simple shear flow mentioned, it is also consistent 
with turbulence decay at  high Reynolds number and small anisotropy. An independent 
verification of the theoretical Clt) is provided by eddy simulations (Feiereisen et al. 
1981) in an average sense. The formal difference between the theoretical q5tj, , and the 
Rotta model is that the coefficients Cij) are not the same for all i,j, and vary with 
anisotropy, but in a predictable way. The theoretical coefficients are understandably 
complex because they account for various lengthscales of the turbulence, and, in fact, 
were derived from two-point theory; i.e. the theoretical &, , is derived from and is 
equivalent to a two-point model. In that derivation, the spectral complexity inherent 
in a two-point description was converted by algebraic manipulation into a complex 
function of stress ratios contained within a single-point description. Briefly, by way 
of further explanation, the ratios of the many scales of turbulence spectra are 
accounted for by ratios of ( u ~ ) / ( u ~ )  and (u?) / (u t )  in the single-point description 
given here. A different matter, but one of practical consequence, is that Cij) is 
insensitive to the large-scale (production) region of the spectrum, and, in that sense, 
is universal. 

Another consideration is that deviations from local isotropy needed to be accounted 
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for in order to show that the Launder et al. coefficients did not vary appreciably with 
shear strength (i.e.for HGC were virtually the same as for CHC). Otherwise C$i) would 
have appeared to decrease by 20 % as the shear strength decreased. In  fact, it was 
Ck) that decreased, in a theoretically predicted way. Fortunately, CHC provided 
information to estimate e22/e33; otherwise the constancy of the Launder et al. 
coefficients may not have been discerned. The estimated value of ea2/es3 could also 
have been obtained from eddy simulations (Feiereisen et al.). 

A final note is that the full complexity of the theoretical &, was included because 
our principal aim was to present the theory and determine if it could explain the CHC 
and HGC experiments. The theoretical expression might be simplified for use in 
models if a need should arise in the future. 
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Appendix. The coefiicients Clt) derived in paper II 
The purpose of the Appendix is to present the expressions for these coefficients as 

explicit functions of (u:)/(u:) and (u:)/(u:) and to outline how they are calculated 
from equation (C 3) of that paper. In  11, Ci;) waa actually given in terms of other 
dimensionless coefficients I,, as follows : 

where a,, = (u t ) - fk  is the anisotropy, y! = (u: ) / (u: ) ,  and Zi = (u: ) / (u: ) .  The 
coefficient p2, is given by (C 3) of I1 aa an integral of the scalar spectrum E2,(k). This 
expression also gives pll and when Ea2(k) is replaced by Ell(k) and E3,(k) 
respectively. The expression (C 3) can be evaluated by straightforward integration 
when E,,(k) are specified. For the case of large Reynolds number and local isotropy, 
it was justified in I1 to use &(k) = for k, < k < k,, E,,(k) = +ze-tk;f-m for 
k < k,, where a = 1.5 is the Kolmogoroff constant, m > - 1 is an adjustable parameter 
justified to be 2, k, is the viscous ‘ cut-off’ wavenumber, and k, is an energy-containing 
wavenumber determined by ( u l )  = dk E,,(k) = a d k 3  [ 1 + f (m+ l ) - l ]  in terms of 
(u:> and e. It can be seen that k, is the wavenumber where E,,(k) is maximum. In 
I1 the pit integrals were evaluated for the special case (u:) = (u:). Here we consider 
the general case ( u i )  =I= ( u i ) .  Also, (C 4)-(C 8) of I1 are not accurate enough for 
computations, and have misprints. 
To recalculate p,, for local isotropy, we substitute the above expression for E,,(k) 
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and E = &!Cll + E,, + E3J in (C 3), and numerically integrate for various Y and 2. For 
Z 2 Y 2 1 these integrated values of pit are accurately given by 

fill = DQ[(l+z-4+Y-i)T+(l- 0.72 Y - f ) ( l -  Y+)H(l, Y) 

+ (1 -2-i) (1 -2-4) H (  1,Z) 

p,, = D Q [ d ~ + ( l - Z - ! ) ( l - Z : ) H ( Z ,  2.16 l)+(Z-!- Y-i) 

p,,=OQ[(z+;) Y 3 ~ + ( 1 - Y - i ) ( 1 - Y - : ) H ( Y , 1 )  0.72 

+ ( Y-f - 23) (1 -;) H (  Y ,  Z ) ]  , (A 6) 

0.08 (""- 1) +; (1 - 3 1  a2+b2 ' 
(a2 + b2)t a2+b2 

H ( a ,  b )  = 

where R, is the Reynolds number. These expressions determine Cit) explicitly in terms 
of stress ratios fl= (u;)/(u:) and Zf = ( u ~ ) / ( u ~ )  - for the case of local isotropy. 
Values of C{i) are plotted in figure 1. 

When deviations from local isotropy are significant, the coefficients Biz are 
calculated by simply replacing E,, K & with Eii cc sit, and integrating (C3). The 
resulting values of C$) for the CHC and HGC experiments, where, approximately, 
ell = 1.25e2, and e3, = 1.13e2,, are plotted in figure 2 for ( u ~ ) / ( u ~ )  = 1.67, the stress 
ratio found in both experiments. 
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